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Abstract. Previous work has established that the localized regime of
wave transport in open media is characterized by a position-dependent
diffusion coefficient. In this work we study how the concept of position-
dependent diffusion affects the delay time, the transverse confinement,
the coherent backscattering, and the time reversal of waves. Definitions
of energy transport velocity of localized waves are proposed. We start
with a phenomenological model of radiative transfer and then present
a novel perturbational approach based on the self-consistent theory of
localization. The latter allows us to obtain results relevant for realistic
experiments in disordered quasi-1D wave guides and 3D slabs.

1 Introduction

Among many other features, Anderson localization of waves is characterized by a
halt of diffuse transport [1]. Since the formulation of the scaling theory of localization
we understand that diffusion cannot entirely vanish in open media due to leakage of
waves across the sample boundaries [2]. The result is a suppressed but scale depen-
dent conductance, depending in a universal way on the size and dimensionality of the
random medium. Later work established that many features of scaling theory can be
understood from the self-consistent theory of localization [3,4], which adopts the con-
structive interference of time-reversed waves as the sole mechanism of the suppression
of diffusion. More recently, this theory was extended to predict a position-dependent
diffusion constant [5–7]. Microscopic derivations were provided using diagrammatic [8]
and super-symmetric [9] approaches. Diffusion is suppressed deep inside the sample,
yet hardly near the boundaries. This result is physically plausible, and consistent with
scaling theory for macroscopic transport quantities such as, e.g., the conductance. It
was tested against numerical simulations [10] and observed in an experiment [11].
If stationary transport is described by a spatially varying local diffusion constant,

what does this imply for the dynamics, and in particular for the energy transport
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velocity vE? In a weakly disordered three-dimensional (3D) medium the wave trans-
port is diffusive with the diffusion constant given by D = vE�/3 [12]. It was shown
that vE is intrinsically a dynamic property, whereas the transport mean free path
� emerges by itself in stationary (DC) measurements, like in diffuse transmission
through a slab of thickness L, T∼�/L. This is important because the transport veloc-
ity can be very small due, for example, to strongly resonant scattering, and can thus
lead to “small” diffusion constants. It can be then difficult to distinguish between sit-
uations in which D is small due to Anderson localization effects leading to small � or
due to small vE . Up to now, transport theories of localization essentially concentrated
on � and not on vE . So far we know that vE depends on many sample properties such
as, e.g., the scattering crosssection of scatterers and their number density, but not on
sample size or boundary conditions. Is vE well defined in the localized regime? What
does the position-dependent � imply for the transverse spreading of a wave packet in
experiments similar to those of reference [13]? Similar questions arise for the Wigner
delay time in reflection and transmission, and for coherent backscattering (CBS). In
this work, we first develop general arguments for the delay time in a medium with
position-dependent �, valid under very broad conditions, and then present a pertur-
bational approach to Anderson localization in the framework of the self-consistent
theory of localization. The latter is applied to study wave dynamics, the transverse
spreading of a wave packet, CBS, and time-reversal of localized waves.

2 Friedel identity in radiative transfer

Depth-dependent extinction is very common in radiative transfer. Here we conjec-
ture that the phenomenological equation of radiative transfer (EQRT) applies in
the localized regime though with a depth-dependent scattering mean free path �(z).
This is clearly an oversimplified picture. In particular it disregards off-shell scatter-
ing (ω �= kc) that becomes significant when the scattering mean free path becomes
small. Nevertheless, it is consistent with the macroscopic picture of depth-dependent
diffusion. In this section we make the connection between phase delay time, a highly
mesoscopic wave property, and the EQRT, apparently a classical equation where all
wave properties seem to have disappeared. The essential elements in this approach are
the transport velocity and the link between stored energy and delay time established
in condensed matter physics. We will reproduce some exact results from standard
radiative transfer theory, such as the relation between incoming flux, source and en-
ergy density away from the boundaries, that will be necessary to elucidate the exact
role of the incident flux for the delay time, and its scaling with the sample size.
We consider a slab of disordered medium confined between the planes z = 0 and

z = L and made of isotropic, conservative scatterers. The incoming specific intensity
is I(0, 0 < μ < 1, s) on the left and I(L,−1 < μ < 0, s) on the right. The EQRT can
be written as [14–16]

s

vE
I(z, μ, s) + μ∂zI(z, μ, s) +

1

�(z)
I(z, μ, s)

=
1

�(z)

1

2

∫ 1
−1
dμ′I(z, μ′, s), (1)

where s is the Laplace conjugate of time and μ = cos θ. All observables in this paper
are ensemble-averaged and if no confusion exists, no explicit reference to this will
be given. We have assumed the existence of an energy velocity vE independent of
the direction of scattering μ and position (or depth) z. We can introduce the optical
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depth dτ = dz/�(z) and write

s

vE
�(τ)I(τ, μ, s) + μ∂τI(τ, μ, s) + I(τ, μ, s) =

1

2
vEw(τ, s) (2)

with the energy density w(τ, s) = v−1E
∫ 1
−1 dμI(τ, μ, s) (and equal to 2J/vE in terms

of the source function J featuring in radiative transfer).
Let us first obtain a useful result relevant to the study of the delay time. Upon

integrating equation (2) over the depth z and over all angles we see that

sW (s) +
[
F+(L, s) + F−(0, s)

]
=
[
F−(L, s) + F+(0, s)

]
. (3)

The term in square brackets on the left-hand side contains transmitted and reflected
fluxes F+(L, s) and F−(0, s), respectively, the right-hand side is the incident flux on
both sides of the slab. The total energy isW = S

∫ B
0
dτ�(τ)w(τ) = S

∫ L
0
dzw(z), with

the total optical thickness B = τ(L) and slab surface S. To discuss the delay time,
we assume the incident flux independent of s (i.e., perfect delta functions in time):
F−(L, s) + F+(0, s) = Fin. The average transmission and reflection coefficients are
then T (s) = F+(L, s)/Fin and R(s) = F

−(0, s)/Fin, respectively. For s = 0 (time-
integrated signal), we infer flux conservation R(0) + T (0) = 1. Taking the derivative
of equation (3) with respect to s we obtain

W (s = 0)

Fin
= − dT (s)

ds

∣∣∣∣
s=0

− dR(s)
ds

∣∣∣∣
s=0

=

〈
T (ω)

dφT (ω)

dω

〉
+

〈
R(ω)

dφR(ω)

dω

〉
, (4)

where the angular brackets 〈· · · 〉 indicate that the ensemble averaging is to be car-
ried out for the products TdφT /dω and RdφR/dω. This equation makes the desired
connection between stored energy and total (channel-summed) phase delay time. The
second equality follows from the notion that the complex transmission coefficient is
t =
√
T exp(iφT ), with φT (ω) being the phase shift, and that

1
2 lnT + iφT is a function

of 12s+ iω, so that the Cauchy-Riemann equations give dφT (ω)/dω = −d lnT (s)/ds at
s = 0 (and similarly for the reflection coefficient). The relation between stored energy
(or charge) and phase delay time is well known in different contexts: as Friedel’s iden-
tity [17] in the context of screening of charge around impurities, or as Jauch formula
relating phase delay time to the local density of states in scattering theory [18]; see
also reference [19] for a related discussion and a list of relevant references. In this case
the relation between stored energy in radiative transfer and the mesoscopic density of
states is controlled by the transport velocity vE , which, for the moment, appears just
phenomenologically in the EQRT. The phase delay time, in turn, can easily be related
to the first moment of the scattered intensity, i.e.

∫∞
0
dtT (t)t = 〈T (ω)dφT (ω)/dω〉,

and similarly for reflection, which explains its interpretation as average delay time.
Let us next consider the stationary energy flow putting s = 0 and agree to have

unit incident flux. Upon integrating equation (2) over angles we obtain the following
equation for the energy density:

w(τ) = SL(τ) + SR(B − τ) + 1
2

∫ τ
0

dτ ′E1(|τ − τ ′|)w(τ ′). (5)

This identifies the source in radiative transfer as SL(τ) = v
−1
E

∫ 1
0
dμI(0, μ) exp(−τ/μ)

in terms of the incident radiation, and similarly for SR on the other side of the slab.
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Note that ∫ ∞
0

dτSL(τ) =
f+(0)

vE
, (6)

that is, the integral over optical depth of the energy source is determined by the
incident flux density f+ = F+/S.

A useful identity can be obtained by defining K(τ) ≡ ∫ 1−1 dμμ2I(τ, μ). We easily
see that ∂τK = −f . Since the total flux is conserved, K(τ) = −fτ + const. We can
check that this imposes the radiation I∞ − 32f(τ − μ) far from the boundary, with

2

3
I∞ =

∫ 1
0

dμμ2I(0, μ) +

∫ 1
0

dμμ2R(μ). (7)

This relation connects the incident radiation on the surface, the reflected intensity
and the one in the interior of the sample. For a conservative half space, f = 0, and the
radiation pattern reaches the isotropic intensity I∞. The isotropic incident radiation
I(0, μ > 0) = 2fin has incident flux density fin = Fin/S, and equation (7) immedi-
ately gives us the (expected) result that I∞ = 2Fin/S, and hence the constant energy
density w = 4Fin/SvE away from the boundaries.
Previous work [20] showed that the delay time is essentially determined by a

typical geometric length scale of the medium and largely independent from scatter-
ing details of bulk and surface, provided the incident radiation is isotropic. Pierrat
et al. [21] confirmed this observation but emphasized the persisting role of transport
velocity. Following this previous work, we can write for the total channel-averaged
delay time 〈t〉 = 〈T (t)t〉+ 〈R(t)t〉 for an optically thick medium of arbitrary geometry
with volume V and boundary surface S,

〈t〉 = 4ν
vE

V

S
. (8)

For isotropic radiation incident on a slab we just derived that w = 4Fin/SvE away
from the boundaries. This result looks “universal” and likely to be valid in more
general geometries. Hence, by neglecting the surface layer, 〈t〉 =W/Fin = 4V/SvE
which confirms the universal value ν = 1 reported in references [20,21]. We recall
that the energy transport velocity so far only appears phenomenologically in the
dynamics of the EQRT, without any microscopic interpretation in terms of scattering
properties. We can now provide a more microscopic definition. Equation (4) states
that 〈t〉 =W/Fin. Combining this with equation (8) yields for the energy transport
velocity

vE =
4fin
w
, (9)

where, given isotropic incident radiation, w =W/V is the volume-averaged stored
energy density in the medium and fin the incident flux density assumed constant
across the boundary surface S. Because all quantities on the right-hand side are well
defined and measurable, this equation can actually serve as the definition of the
energy transport velocity, even in the localized regime. This definition is much in the
spirit of the “energy velocity” as defined by Loudon [22]. It is also clear that via w
the energy velocity becomes connected to the density of states in the medium. In
the next section, we will find that, even in the localized regime with scale-dependent
diffusion, W scales like the volume V so that ν is scale-invariant though not always
equal to 1 if the incident radiation is not isotropic.
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3 Examples of delay time calculations

The most remarkable aspect of equation (4) is that total delay time – an intrinsic
dynamic quantity – is related to the stored energy that can be found from the sta-
tionary EQRT (i.e. putting s = 0). In this section we will calculate total delay un-
der different conditions. In the next section we will address delay in reflection and
transmission separately, and will see that the dynamics then explicitly comes in.

3.1 Delay for isotropic incidence

For isotropic incident radiation equal on both sides of the slab we expect f = 0
and K(τ) to be constant throughout the slab. Hence I is constant and isotropic
everywhere. The main mathematical reason for this almost trivial result is that the
orientational and depth dependencies of the specific intensity are strongly connected
by EQRT. Absence of the first implies absence of the second.
Isotropic radiation I everywhere leads to constant energy density w = 2I/vE . In

its turn, I = vEw/2 implies a flux F
±
in =

1
4SvEw incident on both sides at the surface

S. Since W = w × LS = w × V , the channel-averaged delay time is

〈t〉 = 〈T (t)t〉+ 〈R(t)t〉 = 2L
vE
=
4V

StotvE
. (10)

The result 〈t〉 = 2L/vE holds for the slab geometry but it is clear that the argument
of constant energy density is valid for any geometry with a total surrounding surface
Stot (= 2S for a slab) and a volume V , and even if the waves are localized by disorder.
Hence ν = 1 in equation (8) and we recover the somewhat counterintuitive result by
Blanco and Fournier [20].
If the number density n of the scatterers is small enough, we expect W = w0V +

NWS , where WS is the total energy stored inside each scatterer, given the constant
energy density w0 outside. If vp is the phase velocity in the medium, we can write [12]
fin = I/2 =

1
4w0c

2
0k/ω = w0c

2
0/4vp and w = w0 + nWS . Thus, 1/vE = vp/c

2
0 × (1 +

nWS/w0), which is the microscopic result, and scale independent. If the scatterer
density is high enough for the waves to be localized, this result no longer applies.
Nevertheless, W still scales with the volume V so that the definition (9) for vE does
not reveal any scale dependence. A hand waving argument could have given W∼ξ3
(with ξ the localization length) rather thanW∼L3. The dependence of energy density
on depth w(z) will be discussed in the next section and will help to explain why this
argument is wrong.

3.2 Delay for normal incidence

For the incident wave normal to the surface z = 0 of a thick slab one finds the sta-
tionary reflection coefficient R(μ) = 1

2

√
3H(1, μ), which carries a unit flux density

f−(0) =
∫ 1
0
dμμR(μ). At the same time,

∫ 1
0
dμμ2R(μ) = τ0, with τ0 the extrapola-

tion length in units of the mean free path [23]. Equation (7) then tells us that I∞ =
3
2 (1 + τ0) thus I(τ, μ) =

3
2 (1 + τ0 − fτ + fμ). Hence w(τ) = 3 (1 + τ0 − fτ) /vE . If

we neglect the small energy contained in the boundary layers, we can impose
W (B) = 0 so that the total flux density is f = (1 + τ0)/B. From the Friedel iden-
tity, the total, channel-averaged delay time is

〈t〉 = 〈T (t)t〉+ 〈R(t)t〉

= 3(1 + τ0)
1

vE

∫ L
0

dz
(
1− τ
B

)
. (11)
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Recall that dz = dτ�(τ) and that �(τ) = �(B − τ) if we assume that boundary condi-
tions are identical on both sides of the slab. Thus,

〈t〉 = 3
2
(1 + τ0)

1

vE

∫ L
0

dz
(
1− τ
B
+
τ

B

)

=
3

2
(1 + τ0)

L

vE
. (12)

This result is the exact outcome of radiative transfer theory for normal incidence on a
slab without internal reflections (τ0 = 0.7104 . . .), for an arbitrary (symmetric) profile
�(z). We find here ν = 3(1 + τ0)/4 ≈ 1.28 in equation (8).

3.3 Delay in the diffusion approximation

In the diffusion approximation (DA) we replace equation (1) by the following diffusion
equation:

[
s

vE
+
1

3
�(z, s)q2 +

1

3
∂z�(z, s)∂z

]
G(z, z′, s, q) = δ(z − z′). (13)

Here G(z, z′, s, q) is the Fourier-Laplace transformation of G(z, z′, t,R) which stands
for the energy density at time t, depth z and transverse distance R, given a source at
t′ = 0, z′, and R′ = 0. The solution for the energy density given an arbitrary incident
radiation I(0, μ > 0, s, q) (where the q-dependence determines the transverse profile
of the incident beam) is w(z, s, q) =

∫
dzSG(z, zS , s, q)S(zS , s, q) where we recall from

the previous section that the source is S(z, s, q) = (1/vE)
∫ 1
0
dμI(0, μ, s, q) exp(−τμ).

Upon substituting dτ = dz/�(z, s), the diffusion equation takes the form

[
s

vE
�(τ, s) +

1

3
�(τ, s)2q2 − 1

3
∂2τ

]
G(τ, τ ′) = δ(τ − τ ′), (14)

where we omitted s and q as explicit arguments of G for brevity. For the total delay
time we just need s = 0. We shall use simplified boundary conditions G = 0 at τ =

B + τ0 and τ = −τ0 with B =
∫ L
0
dz /�(z) the total optical thickness. This allows us

to avoid mixed boundary conditions but generates small errors of order τ0/B in the

energy density. For s = 0 and q = 0 the eigenfunctions are Φn(τ) =
√
2/B∗ sin[qn(τ +

τ0)] with eigenvalues qn = πn/B
∗ (we shall write B∗ = B + 2τ0 and τ∗ = τ + τ0), and

the solution of equation (14) is

G(τ, τ ′) =
2

B∗

∞∑
n=1

sin(qnτ
∗) sin(qnτ ′∗)
1
3q
2
n

. (15)

The stored energy can be calculated as

W (s) =

∫
d2r

∫ L
0

dz w(z, r, s)

= (2π)2
S

vE

∫ L
0

dz G(τ, τS , s, q = 0)

∝
∫ L
0

dzW (τ, s) (16)
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withW (τ, s) ∝ v−1E G(τ, τS , s, q = 0). We shall ignore the front factor that drops out in
the delay time. Upon inserting the eigenfunction expansion (15) for G and assuming
τS 
 B, we obtain

W (τ, s = 0) =
6B∗

vEπ2

∞∑
n=1

sin(qnτ
∗
S) sin(qnτ

∗)
n2

(17)

≈ 6τ
∗
S

vEπ

∞∑
n=1

sin(qnτ
∗)

n
(18)

=
3

vE
τ∗S(1− τ∗/B∗). (19)

And, finally,

W = W (s = 0) =

∫ L
0

dzW (τ, s = 0)

=
3

vE
(τS + τ0)

∫ L
0

dz[1− τ(z)∗/B∗]. (20)

This result resembles closely equation (11) obtained from the radiative transfer theory.
Note that we have assumed nothing yet about �(z). The last simplification can be
made if we assume that �(z) = �(L− z) which is true in the self-consistent theory of
localization [5–8]. This implies τ(L− z) = B − τ(z) and

2W =
3(τS + τ0)

vEB∗

∫ L
0

dz[B∗ − τ(z)− 2τ0 + τ(z)]. (21)

Hence, to leading order,

〈t〉 = 3(τS + τ0)L
2vE

. (22)

Thus DA yields ν = 3(τS + τ0)/4 in equation (8). This is scale-independent
but depends on exact source depth and extrapolation length z0 which, in turn, is
known to depend on internal reflections on the sample surfaces. Without internal re-
flection at the boundaries τ0 =

2
3 . We see that DA correctly reproduces the two cases

considered within EQRT: the normal incidence has τS = 1 and the isotropic incidence
has τS =

2
3 . For an incidence from direction μ0 we easily find τS = μ0.

3.4 Delay time for a sphere

In the following we will obtain the total delay time for a 3D sphere of radius R
with equal radiation incident on all points of the outer surface that still may
depend on μ. We expect the total delay time – integrated over all outgoing points
on the surface – to be independent of angle, so we adopt a spherically symmetric
source Finδ(r − rS)/4πr2. We shall put w(R+ z0) = 0 as a boundary condition in
the diffusion equation

sw(r, s)− 1
r2
d

dr

[
r2
vE

3
�(r)
dw(r, s)

dr

]
= Fin

δ(r − rS)
4πr2

. (23)
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Clearly, the outgoing flux is normalized, since −4πR2 × 1
3vE�(R)dw/dr

∣∣
r=R,s=0

=

Fin. The Friedel identity applies and the delay time is equal to

〈t〉 = 4π
Fin

∫ R
0

drr2w(r, s = 0). (24)

We can substitute dX = −dr/13�(r)r2, with X(R+ z0) = B < X < X(r = 0) =∞.
For s = 0 the diffusion equation translates into

−vE d
2

dX2
w(X, s = 0) =

Fin

4π
δ(X −XS). (25)

The solution of this equation satisfying w(X = B) = 0 and w(X →∞) <∞ to have
finite energy in the center of the sphere is

4πw(X)

Fin
= − 1
2vE
|X −XS |+ 1

2vE
(X +XS)− B

vE
. (26)

The delay time equals

〈t〉 = 4π
Fin

∫ rS
0

drr2w(r) +
4π

Fin

∫ R
rS

drr2w(r). (27)

As follows from equation (26), for 0 < r < rS the energy density w(r) is constant
and proportional to XS −B ≈ (z0 + zS) dX/dr|r=R = (z0 + zS)/[13�(R)R2]. The first
term in equation (27) thus equals (z0 + zS)R/vE�(R). The second integral is a surface
contribution that is smaller than the first one by a factor R/zS . Thus, for Fin∼R2
we find W∼R3. This “normal” scaling implies that

〈t〉 = zS + z0
�(R)

R

vE
. (28)

This result is similar to what we have found for the slab. For normal radiation incident
from the far field, and without internal reflection, the front factor equals 1 + 2/3 =
5/3, or equivalently ν = 1.25 in equation (8). For isotropic incident radiation the front
factor equals 4/3, and we recover the universal value ν = 1.

4 Quasi-1D transport

In this section we investigate the delay time in a quasi-1D disordered wave guide
to see what remains of the universal relation (8) if the measurement is done only
in transmission or reflection. This question is extremely relevant for experiments
where measuring both transmission and reflection may be problematic. We know
that, in principle, in a quasi-1D wave guide with N transverse modes all waves are
localized with a localization length ξ∼N�B [24]. Here �B is the transport mean free
path in the absence of Anderson localization effects. In the self-consistent theory
of localization, the quasi-1D geometry is described by the diffusion equation (14)
with q = 0, supplemented by a self-consistent equation for the position-dependent
transport mean free path [6]1:

1

�(τ, s)
=
dτ

dz
=
1

�B
+
1

3ξ
G(τ, τ, s), (29)

1 Our definition of the localization length ξ differs from that of references [6–8] by a factor
of 2.
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which also depends on s. The Green’s function of equation (14) is given by equa-
tion (15). For τ 
 B, i.e. for a semi-infinite wave guide, the sum in equation (15)
is essentially an integral and G(τ, τ) = 3(τ + τ0). We then easily find �(z, s = 0) =
[�B/(1 + z0/ξ)] exp(−z/ξ).
The dynamics can be included using standard perturbation theory and treating

s�(τ, s)/vE as a small perturbation in equation (14). As in the previous section, we
account for boundary conditions by introducing an extrapolation length z0, B

∗ =
B + 2τ0 and τ

∗ = τ + τ0. Since �(τ, s) is suppressed by localization and since s is
supposed to be a small hydrodynamic frequency, the perturbation can be argued to
be“small”. In first-order perturbation theory the eigenvalues of the diffusion equation
change by sWnn/vE with

Wnm ≡ 〈Φn|�(τ, s)|Φm〉 (30)

and the eigenfunctions by

δΦn(τ) = − 3
√
2s√
B∗vE

∞∑
m�=n

Wnm

q2m − q2n
sin(qmτ

∗). (31)

Hence,

G(τ, τ ′, s) =
∞∑
n=1

Φn(τ
∗, s)Φn(τ ′∗, s)

sWnn(s)/vE +
1
3q
2
n

. (32)

We easily find that

Wnm = �B
2

B∗

∫ B+τ0
−τ0

dτ
sin(πnτ∗/B∗) sin(πmτ∗/B∗)
1 + (τ∗�B/ξ)(1− τ∗/B∗)

=
2ξ

B∗

∫ 1
0

dx
sin(πnx) sin(πmx)

ξ/�BB∗ + x(1− x) . (33)

Wnm is intrinsically a parameter of the dynamics, and it is of no relevance when
s = 0. We can map the denominator in the sum of equation (32) onto the familiar
diffuse 1/[s�B/vE +

1
3 (πn�B/L)

2]. It is tempting to conclude that each diffusion mode

has now achieved its own diffusion constant Dn(s = 0) =
1
3 (vE�B/Wnn)L

2/�2BB
2. We

could proceed by saying that the transport velocity is affected by the dynamic kernel

Wnn/�B∼ξ/B < 1 according to v(n)E ∼ vE/Wnn and would thus be enhanced by the
scale-dependent diffusion. In this logic, the transport velocity would be associated

with the energy density W̃ ∼ �(τ)W which is the conserved quantity featuring in
the diffusion equation (14). Such a definition of vE is based on long-time tails of
energy density in contrast to equation (9) that relies on the average delay time and
the genuine energy density W which scales normally as W∼V even in the presence
of scale-dependent diffusion. Apparently, the transport velocity is no longer uniquely
defined when localization effects come into play. A deeper analysis is clearly necessary
here but it is beyond the scope of this work.

4.1 Delay time in reflection

We are interested in calculating the weighted delay time in reflection: 〈R(t)t〉 =
〈R(ω)dφ/dω〉 = −dR(s)/ds at s = 0, with R(s) being the Laplace transform of the
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average reflection coefficient R(t). In the diffuse regime, it is easy to see that
〈R(t)t〉 ∝ L/vE up to a factor related to boundary effects, which provides a unique
opportunity to measure the transport velocity directly. For normal diffusion, the
energy density decays essentially algebraically between the two boundaries of the
medium, and the total energy is thus proportional to L. In the following we ignore
the s-dependence of � imposed by localization effects, but we shall perform numerical
calculations to make a comparison.
We consider a perfect point source δ(τ − τS) in equation (14). The average total

reflection coefficient (integrated over all angles −1 < μ < 0) is

R(s) = +
1

3
∂τG(τ = 0, τS , s). (34)

It can easily be seen that

R(0) =
2

B∗

∞∑
n=1

cos(qnτ0) sin(qnτ
∗
S)

qn
(35)

≈ 2
π

∞∑
n=1

sin(nπx)

n
= 1− x (36)

with x = (τS + τ0)/B
∗ the transmission, exponentially small in the localized regime,

and for a source near z = 0. We have two contributions to the delay time 〈R(t)t〉 =
−∂sR(s = 0). The first comes from the modified eigenvalues:

〈R(t)t〉(1) = 2

B∗ 13vE

∞∑
n=1

Wnn
sin(qnτ

∗
S)

q3n

=
6(B∗)2

vE

1

π3

∞∑
n=1

Wnn
sin(πnx)

n3

≈ 6(B
∗)2

vE

x

π2

∞∑
n=1

Wnn

n2
. (37)

The second contribution to the delay time stems from the modified eigenfunctions,
which generate

〈R(t)t〉(2) = 6

B∗vE

∞∑
n=1

∞∑
m�=n

qmWnm

q2m − q2n
sin(qnτ

∗
S)

q2n

+
6

B∗vE

∞∑
n=1

∞∑
m�=n

Wnm

q2m − q2n
sin(qmτ

∗
S)

qn
. (38)
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Upon interchanging n and m in the first line we rewrite equation (38) as

〈R(t)t〉(2) = 6

B∗vE

∞∑
n=1

∞∑
m�=n

Wnm

q2m − q2n
sin(qmτ

∗
S)×

(
1

qn
− qn
q2m

)

=
6(B∗)2

vE

1

π3

∞∑
n=1

∞∑
m�=n

Wnm

m2n
sin(πmτ∗S/B

∗)

≈ 6(B
∗)2

vE

τ∗S
B∗π2

∞∑
n=1

∞∑
m�=n

Wnm

mn

=
6B∗τ∗S
vE

1

π2

∞∑
n=1

⎛
⎝ ∞∑
m�=n

Wnm

mn
− Wnn
n2

⎞
⎠

= −〈R(t)t〉(1) + 3τ
∗
Sξ

vE

∫ 1
0

dx
(1− x)2

ξ/�BB∗ + x(1− x) . (39)

The approximation assumes τS , τ0 
 B. We can interchange x and 1− x and write
(1− x)2 + x2 = −2x(1− x) + 1 to get

〈R(t)t〉 = −〈T (t)t〉+ 3τ
∗
Sξ

2vE

∫ 1
0

dx

(
B∗�B/ξ

1 + (B∗�B/ξ)x(1− x)
)

= −〈T (t)t〉+ 3τ
∗
S�B

2vE

∫ L+z0
−z0

dz, (40)

where the delay in transmission 〈T (t)t〉 = 3ξτ∗S(1− L/B�B)/vE is obtained in the
next section. Anticipating this result gives us

〈R(t)t〉 = 3(τS + τ0)L
2vE

(
1− 2ξ
L
+ 2

ξ

B�B

)
, (41)

where all corrections of order z0/L have been ignored. This expression approaches
(τS + τ0)L/vE in the diffuse regime B 
 ξ, and converges to 32 (τS + τ0)L/vE deep in
the localized regime. Contrary to the total delay, the delay time in reflection varies,
though little, upon going from the diffuse into the localized regime. We illustrate this
in Figure 1(a) where results of different approaches to the calculation of 〈R(t)t〉 are
compared. We see, in particular, that our perturbational result (41) is not exact and
corresponds to a solution assuming �(z, s) = �(z, 0). Its dependence on the strength of
localization effects quantified by the ratio ξ/L is, however, similar to the one exhibited
by the exact solution of equations (13) and (29).
A naive argument would suggest that in the localized regime, a wave penetrates

only a distance ξ into the medium. This would lead to a much shorter delay time of
order ξ/vE in reflection. This argument is apparently wrong by a factor L/ξ, because
the energy does not decay as exp(−z/ξ). The lack of a penetration depth ξ in the
energy density w(z) is seen when we translate the (1− τ/B)−profile of the energy
density back to the z variable. We observe that w(z), in the localized regime, is
actually flat on both sides of the medium with a steep descent in a region of size
ξ around z = L/2. This is illustrated in Figure 2 where we show profiles w(z) for
several values of ξ/L. We observe that w(z) evolves from a linear decay in the diffuse
regime ξ/L→∞ to a step-like function deep in the localized regime ξ/L
 1. For a
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Fig. 1.Weighted time delay in reflection (a) and transmission (b) of a wave through a quasi-
1D disordered wave guide as a function of the ratio of localization length ξ to the length
L of the wave guide. Blue solid lines show the results following from the exact numerical
solution of the self-consistent equations (13) and (29), black dashed lines show the numerical
solutions in which the dependence of �(z, s) on s in neglected. The latter coincide with our
perturbation theory results (41) and (48) shown by red circles. We used L = 200�B , z0 = 0,
and zS = �B for this figure.

given incident flux density F+, the energy density is always the same in the middle of
the slab, whatever ξ/L. As counterintuitive as this can appear, the naive assumption
of initial decay of w(z) over a region of size ξ is not confirmed by the z-dependent
description of localization, since near the boundaries the waves are not localized.
However, for a source in the middle of the wave guide, we find w(τ)∼|τ − 12B| − 12B.
The energy density as a function of z is then

w(z) ∼ eL/2ξe−|z−L/2|/2ξ − 1, (42)

i.e., w(z) decays exponentially on both sides from the source and the waves are
localized deep in the sample. The delay time, on both sides, then varies as 〈t〉R,T =
L2/DB for L
 ξ, and grows exponentially as exp(L/2ξ) deep in the localized regime.

4.2 Delay time in transmission

The transmission is given by

T (s) = −1
3
∂τG(τ = B, τS , s) (43)
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Fig. 2. Energy density, in units of F+/vE (with F
+ the incident flux) inside a disordered

wave guide for a wave incident at z = 0, as a function of position z for four different values
of the ratio of localization length ξ to the length L of the wave guide. We used z0 = 0 and
zS = �B for this figure. Independent of ξ/L, the total energy W inside the wave guide is
always equal to 3(τS + τ0)LF

+/2vE = 3LF
+/2vE .

and we easily obtain

T (0) = − 2
B∗

∞∑
n=1

cos(nπB/B∗)
sin(qnτ

∗
S)

qn

≈ 2
π

∞∑
n=1

(−1)n+1 sin(nπx)
n

= x, (44)

where we recall that x = τ∗S/B
∗. Similar to equation (13) we find the first contribution

to delay time in transmission,

〈T (t)t〉(1) = 2

B∗ 13vE

∞∑
n=1

(−1)n+1Wnn sin(qnτ
∗
S)

q3n

≈ 6(B
∗)2

vE

x

π2

∞∑
n=1

(−1)n+1Wnn
n2
. (45)

The second contribution is

〈T (t)t〉(2) = − 6

B∗vE

∞∑
n=1

∞∑
m′=1

qmWnm

q2m − q2n
cos(mπ) sin(qnτ

∗
S)

q2n

− 6

B∗vE

∞∑
n=1

∞∑
m�=n

Wnm

q2m − q2n
cos(nπ) sin(qmτ

∗
S)

qn
. (46)



1470 The European Physical Journal Special Topics

Again upon interchanging n and m in the first term, we obtain

〈T (t)t〉(2) = 6

B∗vE

∞∑
n=1

∞∑
m�=n

(−1)n+1Wnm
q2m − q2n

sin(qmτ
∗
S)×

(
1

qn
− qn
q2m

)

=
6B∗τ∗S
vE

1

π2

∞∑
n=1

(−1)n+1 ×
( ∞∑
m=1

Wnm

mn
− Wnn
n2

)

= −〈T (t)t〉(1) + 6B
∗τ∗S
vE

1

π2

∞∑
n=1

∞∑
m=1

(−1)n+1Wnm
mn
. (47)

Hence, the mean weighted delay time is transmission is

〈T (t)t〉 = 6B
∗τ∗S
vE

1

π2

∞∑
n=1

∞∑
m=1

(−1)n+1Wnm
mn

=
3ξτ∗S
vEB∗

∫ B∗
0

dτ

[
1− 1

1 + (�B/ξ)τ(1− τ/B∗)
]

=
3ξτ∗S
vE

(
1− 1

B∗�B

∫ L+2z0
0

dz

)

≈ 3ξτ
∗
S

vE

(
1− L

B�B

)
. (48)

For ξ  B�B (diffuse regime), 〈T (t)t〉 = (τS + τ0)L/2vE and thus the un-weighted de-
lay time is 〈t〉T = L2/6DB . Upon entering the localized regime (ξ < B�B), this value
saturates exponentially towards the L-independent value 〈T (t)t〉 = 3(τS + τ0)ξ/vE .
The un-weighted delay time is now equal to 〈t〉T = 3ξB/vE . Naively, we could
have expected 〈t〉T = L2/6D with a reduced “scale-dependent” diffusion constant
D = DBL/B�B . This argument turns out to be wrong by a factor of order L/ξ. The
dependence of 〈T (t)t〉 on ξ/L is illustrated in Figure 1b. Similarly to the case of
reflection, we observe deviations of equation (48) from the exact numerical calcula-
tion, that also takes into account the dependence of � on the dynamical parameter
s. Quite remarkably, even though our results for both 〈R(t)t〉 and 〈T (t)t〉 are only
approximate, their sum 〈t〉 = 〈R(t)t〉+ 〈T (t)t〉 is equal to the total delay time (12)
exactly.

5 3D slab

In this section we use the perturbation theory to study the delay time in a 3D slab. We
also calculate other properties characteristic for 3D media: coherent backscattering,
transverse spreading of a focused incident beam, and time-reversal focusing in the
localized regime. As in Section 2, we consider a slab of disordered medium confined
between planes z = 0 and z = L.

5.1 Delay time

The results obtained above for a quasi-1D system can be used – mutatis mutandis
– for the 3D slab geometry, provided that we integrate over the transverse surface
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(hence q = 0). Physically this corresponds to measuring the delay times upon integra-
tion over the entire boundary surfaces. It can easily be seen that the total weighted
delay in reflection, for example, is 〈R(t)t〉 = −dR(s = 0,q = 0)/ds. However, the dif-
fusion coefficient is no longer determined by the return probability τ(1− τ/B) formula
valid in a quasi-1D wave guide. For q = 0, equation (13) remains valid and τ can be
defined similarly in terms of �(z). We define

Wnm =
2

B

∫ B
0

dτ�(τ) sin(πnτ/B) sin(πmτ/B)

= 2

∫ 1
0

dx sin(πnx) sin(πmx)�(τ = xB) (49)

and find

〈t〉R ≈ 〈R(t)t〉 = 3Bτ
∗
S

vE

∫ 1
0

dx(1− x)2�(τ = xB).

Let us consider a profile �(z) = �B/(1 + z/ξc) for 0 < z < L/2 (and mirrored on
the other side of z = L/2), typically valid at the 3D mobility edge [5]. Since �Bdτ =
dz(1 + z/ξc), we find

〈R(t)t〉 = 3B�B
vE

∫ 1/2
0

dx
(1− x)2 + x2√
1 + (B/τξc)x

(50)

with τξc = ξc/�B and B = L/�B + (L/2)
2/�Bξc. For L
 ξc we obtain 〈R(t)t〉 =

(τS + τ0)L/vE . For L ξc, we have 〈R(t)t〉 = 3(τS + τ0) 2360 (L2/4ξcvE)× 2ξc/L. The
correlation length ξc drops out and 〈R(t)t〉 → 23

20 L/vE scales with the sample size L.
The front factor 1.15 is smaller than the factor 1.5 obtained for the localized regime,
and slightly exceeds the value 1 in the diffuse regime.
In transmission we proceed in a similar way and obtain

〈T (t)t〉 = 3Bτ
∗
S

vE

∫ 1/2
0

dx2x(1− x)�(τ = xB). (51)

This yields in the localized regime 〈T (t)t〉 → 7
20 (τ0 + τs)L/vE , smaller than but of

the same order of magnitude as the weighted delay in reflection. Note that the Friedel
identity (22) is obeyed (7/20 + 23/20 = 3/2). Again, the s−dependence affects both
delays, but not their sum. In the diffuse regime, the ratio of weighted delays in
reflection and transmission is 2 : 1, at the mobility edge this is close to 3 : 1.
In the localized regime the ratio further grows up to L/ξ.

5.2 Transverse diffusion

In reference [13], dynamic transverse diffusion was used as a probe for Anderson
localization. In the following we will treat 13�(τ, s)

2q2 as a small perturbation in
equation (14) and study stationary properties. The Green function of the diffusion
equation (14) is most conveniently written as

G(τ, τ ′,q, s) =
∑
n

Φn(τ, q, s)Φn(τ
′, q, s)

s
vE
Wnn +

1
3Vnnq

2 + 13q
2
n

, (52)

where we have introduced

Vnm = 〈Φn|�(τ, s)2|Φm〉. (53)



1472 The European Physical Journal Special Topics

Note that the Green function (52) looks as if anisotropic diffusion processes different
for each mode were at work. The modification of eigenfunctions due to the perturba-
tion 13�(τ, s)

2q2 is

δΦn(τ,q) = −
√
2q2√
B∗

∞∑
m�=n

Vnm

q2m − q2n
sin(qmτ

∗). (54)

Given a stationary source of waves of small transverse size at {xS = yS =
0, zS∼�B}, the stationary energy at depth z and transverse distance R is
ρ(z,R) = G(z, z′ = �B ,R, s = 0), with transverse Fourier transform ρ(z, q). The
mean transverse energy spread at a depth z can be quantified by 〈R(z)2〉 =
〈ρ(z,R)R2〉/〈ρ(z,R)〉 = −(1/q)∂q[q∂qρ(z, q)]/ρ(z, q) at q = 0 (we use R = {x, y}).
Hence we need to expand to order q2. This expansion is similar to the expansion in
s used to find the delay time, and we can copy the result (48) mutatis mutandis,

δρ(τ, q) = −6q
2

B

∞∑
n=1

∞∑
m=1

Vnm

q2nq
2
m

sin qnτ
∗ sin qmτ∗S

=
−12B2q2
π4

∫ B+τ0
−τ0

dτ ′ ×
∞∑
n=1

∞∑
m=1

sin qnτ
∗ sin qmτ∗S sin qnτ

′∗ sin qmτ ′∗

m2n2

≈ −3q2Bτ∗S
∫ B∗
0

dτ ′�(τ ′ − τ0)2 ×
[
min(τ, τ ′)
B∗

− ττ
′

B∗2

](
1− τ

′

B∗

)
. (55)

Since ρ(τ, q = 0) = 3τ∗S(1− τ∗/B∗) we find

〈R2(τ)〉 = 4
∫ τ∗
0

dτ ′�(τ ′ − z0)2τ ′
(
1− τ

′

B∗

)
+

τ∗

B∗ − τ∗
∫ B∗
τ∗
dτ ′�(τ ′−z0)2

(
1− τ

′

B∗

)2
.

(56)

Near τ = B (in transmission) the second term is negligible, and we obtain

〈R2(L)〉 = 4
∫ B∗
0

dτ ′
�(τ ′ − z0)2
�2B

τ ′
(
1− τ

′

B∗

)
. (57)

In the diffuse regime � = �B and τ = z/�B so that 〈R2(L)〉 = 2L2/3. In the localized
regime, �(z) can be approximated by its profile in quasi-1D: �B/� = 1 + (τ/τξ)(1−
τ/B), so that

〈R2(L)〉 = 4ξ
∫ L
0

dz

(
1− �(z)

�B

)
≈ 4ξL. (58)

These findings agree with previous results [25]. At a given optical depth τ 
 B we
can take the limit of the half-space (L→∞) to see that

〈R2(z)〉 = 4ξ2 log (1 + τ∗/τξ) = 4ξ(z + z0) (59)

and, in particular, 〈R2(0)〉 = 4ξz0 in reflection. This result is surprisingly simple: the
mean-square size of the transverse region in which the wave energy is concentrated
grows linearly with the depth into the medium. For normal diffusion we also find
a linear growth 〈R2(z)〉 = 4

3L(z + z0)(1− z/2L) with, however, a much larger slope
that even diverges for a half-space since the transverse profile then becomes algebraic.
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5.3 Coherent backscattering and time reversal

In the diffusion approximation and for normal incidence, the stationary CBS profile
is approximately given by [26]

C(Q) = G(τ = 1, τS , s = 0,q = Q) (60)

with Q = k+ k′ that vanishes at exact backscattering and G given by equation (52).
For τS ≈ 1, this yields the familiar formula for CBS of a normally incident plane wave.
For τS somewhere inside the slab, this expression actually describes the ensemble-
averaged time-reversed profile by a perfect pointlike time-reversal machine at an
optical depth τS [27,28]. Using the perturbational approach of the previous section,
we find the emerging specific intensity to be

δC(Q) = −6Q
2B2

π3
(1 + τ0)

∑
n,m

Vnm

nm
sin(qnτ

∗
s ). (61)

Recalling the definition of Vnm, we simplify this to

δC(Q) = −3Q2(1 + τ0)
∫ B∗
0

dτ�(τ − τ0)2 ×
[
min(τ, τS)− τSτ

B∗
] (
1− τ
B∗
)
. (62)

The background is given by

R(0) =
6

B

∑
n

sin qn(1 + τ0) sin qnτ
∗
S

q2n
(63)

= 3(1 + τ0)(1− τS/B), (64)

so that the normalized CBS profile becomes (τS > 1)

C(Q) = 1−Q2 1

1− τS/B
∫ B∗
0

dτ�(τ − z0)2 ×
[
min(τ, τS)− ττS

B∗
] (
1− τ
B∗
)
. (65)

This result can be discussed in various limits. In the weak-disorder limit �(z) = �B
and B = L/�B . Hence, the rounding of the CBS cone is typically −Q2τS�BL, i.e., it
is rounded due to finite-size effects. For a half-space (L→∞) this result is of little
interest since the line profile is known to turn into the familiar cusp −|Q|τS�B , which
is beyond the present perturbation theory as Q2 has been assumed to be the leading
small parameter. However, in the localized regime the limit of L→∞ can be taken
since the integral in equation (65) converges and we obtain

C(Q) = 1− 4Q2ξ(zS + z0). (66)

For CBS of a plane wave at normal incidence zS = �B and we recover the rounding
proportional to −Q2�Bξ as predicted previously [5].
Finally, for a time-reversal experiment with a time-reversal machine at depth zS

we see, quite surprisingly, that the angular size of the focal spot δθ narrows down
with (the genuine) depth according to δθ ∝ 1/k√ξzs in contrast to δθ ∝ 1/kzs in
the diffuse regime. We could have expected δθ∼1/kξ, and arguably an impossibility
to time-reverse well as zS > ξ, but this turns out to be a wrong expectation. Note,
however, that we do not expect auto-focusing (i.e. focusing in the absence of ensemble
averaging) to occur in the localized regime, because strong and long-range correlations
should prevent self-averaging of a signal with even a relatively large bandwidth. A
full discussion of this issue is beyond the scope of the present work.
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6 Conclusions

We have presented very general arguments based on the phenomenological equation
of radiative transfer to derive simple expressions for the average delay time of a
wave in a disordered medium. Our reasonings apply in all regimes of wave scattering,
including the regime of strong (Anderson) localization. Specific examples of delay time
calculations are provided for different geometries (a slab or a sphere) and different in-
cident waves (an isotropic source or an incident plane wave). Detailed considerations
of wave dynamics allowed us to suggest definitions for the energy transport velocity
in the localized regime and to demonstrate that a unique definition for the latter
may be difficult to achieve. In addition, we develop a novel perturbational approach
to radiative transfer of localized waves in quasi-1D and 3D disordered media. This
has enabled us to calculate the delay time measured separately in transmission or
reflection which may be important to design experiments. We also apply our pertur-
bation theory to study how well-known mesoscopic phenomena such as the transverse
spreading of a wave packet, coherent backscattering, and time-reversal are affected
by Anderson localization effects. A future study may be devoted to calculation of
time-dependent quantities, such as the time-dependent transmission and reflection
coefficients, in the framework of our perturbational approach.
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